Machine Learning, Health, and Suicide Risk Identification

Banerjee, S., Wu, Y., Bingham, K. S., Marino, P., Meyers, B. S., Mulsant, B. H., … Flint, A. J. (2024). Trajectories of remitted psychotic depression: identification of predictors of worsening by machine learning. Psychological Medicine, 54(6), 1142–1151. doi:10.1017/S0033291723002945

FREE FULL TEXT


Boudreaux, E. D., Rundensteiner, E., Liu, F., Wang, B., Larkin, C., Agu, E., Ghosh, S., Semeter, J., Simon, G., & Davis-Martin, R. E. (2021). Applying machine learning approaches to suicide prediction using healthcare data: overview and future directions. Frontiers in Psychiatry, 12, 707916. https://doi.org/10.3389/fpsyt.2021.707916

FREE FULL TEXT


Inekwe, T., Mkandawire, W. Wee, B. Agu, E. & Colubri, A. (2024) "Biomarker Trajectory Prediction and Causal Analysis of the Impact of the Covid-19 Pandemic on CVD Patients using Machine Learning," 2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Wilmington, DE, USA, pp. 1–12, doi: 10.1109/CHASE60773.2024.00011

FREE ABSTRACT


Keloth, V. K., Banda, J. M., Gurley, M., Heider, P. M., Kennedy, G., Liu, H., Liu, F., Miller, T., Natarajan, K., V Patterson, O., Peng, Y., Raja, K., Reeves, R. M., Rouhizadeh, M., Shi, J., Wang, X., Wang, Y., Wei, W. Q., Williams, A. E., Zhang, R., … Xu, H. (2023). Representing and utilizing clinical textual data for real world studies: An OHDSI approach. Journal of biomedical informatics, 142, 104343. https://doi.org/10.1016/j.jbi.2023.104343

FREE FULL TEXT